
Using eBPF to inject IPv6 Extension Headers
https://github.com/iurmanj/ebpf-ipv6-exthdr-injection

Netdev 0x17 (Vancouver)
October 31, 2023

Justin Iurman, Eric Vyncke, Benoit Donnet

https://github.com/iurmanj/ebpf-ipv6-exthdr-injection

IPv6 Extension Headers

Purpose: extend the IPv6 core protocol without modification (“similar” to Options in IPv4)

Examples

No Extension Header:

One Extension Header:

Multiple Extension Headers:

IPv6 Extension Headers (cont’)

List of currently defined Extension Headers:

Impact of Extension Headers

Two takeaway lessons*:

* Based on recent studies, including one of ours (see references in the paper)

Impact of Extension Headers

Two takeaway lessons*:

1) Size matters (yeah… sorry, it does!)

* Based on recent studies, including one of ours (see references in the paper)

Impact of Extension Headers

Two takeaway lessons*:

1) Size matters (yeah… sorry, it does!)
2) Whatever the size of a Hop-by-Hop, packets are (almost) always discarded

* Based on recent studies, including one of ours (see references in the paper)

Motivations (why eBPF ?)

- We made several measurements, at the edge (IETF draft [1])
- Could be useful for others too (measurements, testing new services, etc)
- No need to modify existing tools (traceroute and similar) to inject Extension Headers
- Quick development (at least, faster than modifying each tool)
- Have a stack of Extension Headers, per packet
- No longer “just for synthetic traffic”

[1] https://datatracker.ietf.org/doc/draft-vyncke-v6ops-james

https://datatracker.ietf.org/doc/draft-vyncke-v6ops-james/

eBPF/tc (egress) solution

How it looks like

BPF (kernel) program

Sees an “opaque” data buffer to inject (same procedure regardless of the length or the content)

User program

Builds the data buffer to be injected

User program (cont’)

- Hop-by-Hop/Destination Options Header:
- “n” experimental options (0x1e) depending on the total size (n*max_opt_size + remainder)
- random bytes for options data

- Routing Headers (types 0, 2, 3, 4):
- random prefixes in range 2a00:0000::/12 (RIPE NCC)

- Fragment Header (both atomic, non-atomic):
- random identification number

- Authentication/ESP Header:
- random SPI, sequence number, and ICV

Example

1) Attach the program to an interface on egress with tc:
a) tc qdisc add dev eth0 clsact
b) tc filter add dev eth0 egress bpf da obj tc_ipv6_eh_kern.o sec egress

2) Start injecting Extension Headers (e.g., 16-byte Hop-by-Hop, 8-byte Destination, 72-byte Segment Routing):
a) ./tc_ipv6_eh_user.o –enable –hbh 16 –dest 8 –rh4 72

Example

Next

Currently:

1. a custom filter is built into the ebpf program and must be modified as needed
2. randomly generated data
3. fake AH/ESP (no real encryption)

Potential solution:

1. combine the “tc filter add […] egress bpf da obj [...]” with a tc filter on proto/ports (possible?)
2. pass “real” data as a config file (e.g., based on a yang model or similar) to the user program
3. add specific “post-processing” per packet

Thank you
https://github.com/iurmanj/ebpf-ipv6-exthdr-injection

https://github.com/iurmanj/ebpf-ipv6-exthdr-injection

